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Abstract
Decentralized finance (DeFi) describes the emerging ecosystem of financial services, protocols and

applications built on and designed for public blockchains such as Ethereum and Algorand. One of the
most promising applications of blockchain technology, DeFi has experienced explosive growth over the
last few years. But with this growth has also come the attention of bad actors, who aim to exploit flaws
in protocol security for personal gain. Using data collected by DEFIYIELD’s REKT Database on the 200
most costly attacks on DeFi protocols, this paper will analyze and identify trends in these attacks, with
the goal of identifying what types of attacks are most common and most costly to the DeFi sector as a
whole, as well as for individual chains, in order to determine where cybersecurity efforts would best be
focused.

1 Introduction
Imagine a world where financial services are available to anyone, from any location, 24 hours a day, 7 days
a week, without the need for any intermediaries. One where financial transactions are fully automated,
eliminating the need for any intermediary financial institutions, reducing human error and lowering transaction
fees. All transactions are stored on a public, open-source ledger, allowing for complete transparency. Such a
world is becoming increasingly feasible by the day, and the key to achieving it lies in decentralized finance
(DeFi). DeFi is a completely open source and decentralized ecosystem running on blockchain technology
that offers users financial services such as loans, payments, asset management and derivatives, as well as
access to decentralized crypto exchanges (DEXes). DeFi minimizes–and in many cases eliminates– the need
for centralized institutions such as banks or brokerages. Interactions on DeFi are peer-to-peer and are
completed via smart contracts, self-executing computer programs functioning as contracts between parties
that automatically execute when certain pre-set conditions are met. As such, DeFi aims to return control
over individual’s finances back to the individual, restoring freedom of choice to the financial industry.

The near-unlimited potential of DeFi has not gone unnoticed, with the industry as a whole experiencing
incredible growth. DeFi’s current market cap is $147 billion as of April 2022, up from $2 Billion two years ago
(CoinGecko (2022)), an annual growth rate of 757.32%. One of the primary drivers of this growth is a design
principle known as “permissionless composability”, wherein developers are able to employ any combination
of pre-existing DeFi protocols, without requiring any permissions, in order to fulfill specific use cases. This
allows developers to create and interact with limitless combinations of protocols, without any third party
controlling any aspect of the network activity, creating a seamless and frictionless innovation cycle wherein
users can build off of each others work. Indeed, permissionless composability is one of the fundamental
innovations that has allowed DeFi to grow so quickly.

However, this growth has not been without setbacks. One of the primary drawbacks to DeFi is its vulnerability
to hackers. By nature of the way composability allows applications to work on top of each other, if the base
chain was to suffer an attack, all of the applications built on top of it would also be at risk. As well, as
transactions are executed automatically via smart contracts and without human oversight, this means that a
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bug in a smart contract can be exploited by hackers and used to reroute funds from the transaction. Due to
these risks, identifying and preventing possible attacks is one of the primary focuses of the DeFi community
at the moment. Using data collected by DEFIYIELD and scraped by Octoparse as well as secondary data
from DefiLlama, this paper will analyze data on the 200 costliest attacks in decentralized finance in order to
identify which types of attacks are most common, most costly, and most dangerous to particular chains. This
is done with the overarching goal of determining where DeFi cybersecurity efforts would best be focused on
both an industry level and individual level.

The remainder of this paper is structured as follows:

• A data section, wherein I discuss the data used in my analysis in depth, including how the data was
collected, the variables included in the data, and the strengths and weaknesses of the data.

• A results section, where I visualize the data in a series of graphs and plots, and discuss introduce the
results of my analysis.

• A discussion section, where I talk about the results in depth, considering the implications of the results
as well as postulating reasons for the results. This includes a section where I discuss some of the
weaknesses of my report.

• A conclusion, where I discuss my final thoughts on the analysis, as well as sum up some of the discussions.

• An appendix, which includes definitions of some of the key terms used throughout my report.

2 Data
2.1 Data Source and Methodology
The primary data used in this report was collected by DEFIYIELD in their public Rekt Database, a database
containing information on all recorded DeFi scams, hacks and exploits, including the total funds lost in each
event, as well as a breakdown of the technical issues that led to the hack. Data on the 200 costliest attacks
was then scraped from the DEFIYIELD’s website via Octoparse, an a visual web data extraction software,
before being downloaded into a .csv file, at which point it was uploaded to R, cleaned, and made ready for
analysis. Further data on the total value locked (TVL) in each analyzed chain was obtained from DefiLlama’s
TVL database. This data consisted of 15 observations of two variables, Chain and TVL, and was manually
acquired and included in the analysis.

2.2 Data Collection
The dataset used in this report contains information on the 200 costliest attacks in the DeFi space since the
inception of cryptocurrency, with data on attacks as early as the Bitcoin Savings and Trust Ponzi scheme in
July 2012, and as recently as the Elephant Money attack 2 weeks ago. The term ‘attack’ is used as a catch-all
term to encompass any sort of malicious event occuring in the greater decentralized finance space in which
funds were lost, with such events including hacks, rug pulls, exploits, dubious projects and exit scams.

This dataset is a subset of the greater Rekt Database, which at the time of writing holds information on 2780
attacks. Data was collected and recorded manually by the team at DEFIYIELD over the course of multiple
months, before the database was published in August 30, 2021, from which point it has been continuously
updated. While DEFIYIELD is constantly recording new attacks and updating their database themselves,
individuals can also report a claim if they have been affected by an attack themselves, at which point an
engineer at DEFIYIELD will work to verify the report. If the claim is corroborated, the engineer will then
analyze activity on whichever chain the attack is reported to have occurred, and if the claim is proven to be
valid, the attack is then added to the database. Each entry in the database contains the following details:

• The name of the exploited project & its associated URL

• The chain on which the attack occurred

• The date on which the attack occurred
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• The type of malicious event: (Exit Scam, Flash Loan, Exploit, Abandoned, Bank Run, Honeypot,
Access Control)

• The total funds lost in the attack

Malicious events are further defined as follows:

• Exit Scam: When promoters of a cryptocurrency or DeFi protocol vanish during or soon after the initial
coin offering (ICO) for their product. Promoters will market and promote the currency or concept in
order to raise money from investors, before abandoning the project and disappearing with said money.

• Flash Loan: A flash loan attack occurs when a bad actor manipulates the smart contract executing
the flash loan in order to siphon funds to their own wallet. For example, a flash loan attack might
involve the malicious party changing the values of the currencies being traded, in order to trick the
smart contract into thinking the loan has been repaid when it hasn’t.

• Exploit: Any sort of hostile attack on a DeFi service that exploits a vulnerability or oversight in the
protocol code. Exploits can take many forms.

• Abandoned: When a project is abandoned by its developers. Abandoned coins are referred to as ‘dead
coins’.

• Bank Run: Similar to with traditional banks, a bank run in DeFi refers to when holders of a token
rapidly withdraw their assets, causing the token price to drop and leading to a negative feedback
loop wherein other holders panic-sell their tokens, further lowering the price, causing even more users
to sell their tokens, and so forth. The most recent example of a DeFi bank run occurred with Iron
Finance’s TITAN token, which dropped from US$65 to US$0.000000035 over the course of a single day.
Stablecoins, particularly algorithmically backed stablecoins, are especially vulnerable to bank runs.

• Honeypot: An attack in which attackers create and send out smart contracts that have an apparent
vulnerability, but contain a hidden trap, such that when an unsuspecting user goes to exploit the
apparent vulnerability in the contract, the trap activates and allows the attacker to siphon the victims
funds to themselves.

• Access Control: A scam in which the attacker obtains access to a targets digital wallet or authentication
keys.

Further data on the total value locked (TVL) across each chain was manually obtained from DefiLlama’s
public TVL database and used to provide context to certain aspects of the analysis. The data in this database
is acquired from CoinGecko, and consists of 107 observations of 7 variables;

• Chain name
• The number of active protocols on the chain
• 1 day change in TVL
• 7 day change in TVL
• 1 month change in TVL
• Total Value Locked
• Market Cap / TVL

For our analysis we were are interested in the 15 chains included in our initial data set, and of those 15 chains
we were only interested in the TVL, so the data pulled from this source consisted of 15 observations of 2
variables, chain name and TVL.

2.3 Data Analysis
This dataset scraped from DEFIYIELD’s public Rekt Database via the data extraction software Octoparse
(Team (2022)), before being imported to JupyterHub. Data was then processed and analyzed using the R
programming language (R Core Team (2020)), as well as tidyverse (Wickham et al. (2019)), tidyr (Wickham
(2022)) and dplyr (Wickham et al. (2021)) programming packages. The package janitor (Firke (2021)) was
used to clean column names and kableExtra (Zhu (2021)) was used to create tables. gridExtra (Baptiste

3



Auguie [aut (2017)) and reshape2 (Wickham (2007)) were used to format the graphs, while viridis (Garnier
et al. (2021)) was used for data visualization, in particular modifying graph colours.

2.4 Strengths and Weaknesses
The data used in this study has both strengths and weaknesses. In particular, the database from which
the data in this study was pulled is especially thorough in its technical breakdown of the attacks, including
data on whether the attacked project’s team is public, if the project had verified source code, as well as
links containing proof of the attack and the wallets associated with the attack. The methods through which
new data is added to the database are also thorough and involve multiple reviews of the incident, giving
us confidence in the validity of the data. As well, the UI of the database website is user friendly, allowing
parties to sort the data based on the chain on which the attack occurred, the type of attack, how much
funds were lost and the date on which the attack occurred. The website also includes interactive graphs
that help visualize the data. On the other hand, the website provides no option to download the database
in its entirety or in any capacity, which leads to the main weaknesses of this data; the limited number of
observations, and missed variables. As a result of being unable to download the database, I needed to use an
external data extraction program, Octoparse, in order to download the data into a .csv file. While I was
able to acquire a solid amount of observations on a number of useful variables, a lot of data was lost in the
process. In particular, the number of attacks I could scrape was limited by the number of entries the REKT
database could show on one page, which maxed out at 200. Luckily this was still enough data points to allow
for meaningful statistical analysis, but it only accounts for 7.4% of the total data entries in the database.
As well, due to the database’s interface, Octoparse was unable to scrape certain variables, in particular the
indicator variables: ‘Public Team’, ‘Verified source code’ and ‘Audited code matches with deployed smart
contracts code’. As well, due to the manner in which the technical breakdown of the attack was conveyed
in the database, I was unable to use much of the detailed information in these breakdowns. Some of the
variable values are rather broad, such as exploit, which encompasses a large variety of difference types of
attacks; further dividing exploits into more defined categories would help with statistical analysis. Despite
these weaknesses, the final data set retained much of the information on the attacks, and the most important
variables were successfully captured.

3 Results
3.1 Exploitation Rates by Chain
The first aspect of the data that I analyzed was which chains were being exploited most frequently. Summing
the number of exploits on each chain into a new data frame, Figure 1 shows the distribution of attacks across
all recorded chains. Here we see that the vast majority of attacks occur on either Ethereum (ETH) or Binance
Smart Chain (BSC); 50.5% and 30.5% respectively. The remaining 19% of attacks are spread more evenly
across the other chains, with Polygon, Solana, Fantom and Avalanche (AVAX) accounting for a combined
12.5% of total attacks. The remaining 6.5% is distributed evenly across the remaining chains.

Figure 2 shows the distribution of all recorded attacks on each chain, subcategorized into attacks that are
among the 200 costliest and attacks that are not. Here we see that BSC and ETH are still by far the most
attacked chains, but that BSC has been successfully attacked far more times than Ethereum, with BSC
accounting for exactly 60% of all recorded attacks, while Ethereum accounts for 34%. This result, as well
as a visual inspection of the graph, indicates that attacks on Ethereum are in general far more costly than
attacks on BSC, and are also less frequent. The only other chain with a statistically significant amount of
attacks is Polygon, with 94 recorded attacks, 10 of which are among the 200 costliest. Excluding attacks on
BSC and ETH, Polygon accounts for 68.1% of all attacks, 5% of attacks in the top 200 costliest and 82.4% of
all other attacks.
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Figure 1: The Distribution of Attacks by Chain (Top 200)
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Table 1: Key Data on Attacks

Type of Attack Attacks (Top 200) Net Funds Lost
(Top 200)

Average Funds Lost
(Top 200)

Total Recorded
Attacks

Likelihood

Abandoned 1 1099672 1099672 14 7.1%
Access control 25 309225839 12369034 97 25.8%
Exit Scam 42 303791970 7233142 623 6.7%
Exploit 91 2832850730 31130228 180 50.6%
Flash loan 36 418070205 11613061 42 85.7%
Honeypot 5 6182504 1236501 1907 0.3%

Just looking at the number of attacks per chain doesn’t give us the full picture on their security. There are
numerous factors that would affect the number of attacks attempted on a given chain. One such factor is the
varying total value locked (TVL) in each chain. The more value locked in a chain, the more liquidity exists
to be exploited; as such, larger chains like Ethereum are naturally subject to more attacks. Using data from
DeFi Llama (DefiLlama (2022)) on the total value locked across each chain, Figure 3 shows the distribution
of the number of exploits on each chain, divided by the TVL (in billions) in that chain. This gives us a more
realistic picture of the rate at which each chain is being targeted. Note that this figure includes two graphs:
one containing data on Polkadot, and one without data on Polkadot. Due to the relatively tiny amount of
value locked in the Polkadot chain (about $3.84 million), the exploits to TVL ratio for Polkadot was more
than 31x greater than the next highest ratio. As a result, the scale of the graph is disproportionately affected
making it far less interpretable. As such, a second graph is included that omits data on Polkadot. Here we
see a wildly different distribution than in the previous figure, with Ethereum going from the by far the most
exploited chain to the third least exploited, while chains such as Algorand (ALGO), Heco, RONIN and EOS
all saw substantial increases in their adjusted attack rates. Cronos and Tron remain the least exploited, while
Avalanche (AVAX) also saw a noticeable decrease in exploit rates relative to the other chains.

3.2 Attack Rates by Type of Attack
The next aspect of the data I analyzed was the distribution of attack data, in terms of what types of attacks
are most common, which types have historically resulted in the most damage, and which types are most
damaging on average. Figure 4 shows the distribution of attack types, based on frequency, total damage
and average damage. Here we see that exploits are by far the most prevalent types of attacks across all
metrics, accounting for 45.5% of attacks, making exploits more than twice as common as any other attack,
and almost 3 times more costly on average. We also notice that despite being the second most common
attack at 21%, exit scams are only the 4th costliest attacks on average, with both access control and flash
loan attacks costing more on average. Abandoned projects are by far the least common attack, and are only
slightly less costly than honeypot attacks, the second least damaging attack.

Furthering my analysis into attack rates, we next look at the total number of attacks recorded in the REKT
database. Figure 5 shows the distribution of all attacks registered in the REKT database. Here we see a
wildly different distribution than previously, with honeypots accounting for 66.6% of all recorded DeFi attacks
compared to 2.5% of the 200 costliest attacks. Exit scams remain the second most frequent attack at 21.8%
while exploits now account for only 6.3% of all attacks compared to 45.5% previously, marking a 622% drop
in frequency. Table 1 puts all of this data into a table, including a column “Likelihood”, which describes the
likelihood that an attack of a particular type is one of the 200 costliest attacks. Here we see that flash loans
are by far the most likely to be among the 200 costliest attacks, with 36 of the 42 total recorded flash loan
attacks being among the 200 costliest, or about 85.7%. Exploits are the second most likely with about 50.5%
of all exploits being among the 200 costliest. In stark contrast, we note that honeypots have by far the lowest
chance at 0.3%, about 22.3 times less likely than the second least likely attack, exit scams.

The next aspect of the data I analyzed is how the frequency of each type of attack is changing over time.
Figure 6 shows the number of each type of attack year over year since 2016. Here we see that the every type
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of attack increased in frequency in 2021, with exploits experiencing by far the greatest spike. As well, we see
proportionally more attacks per month in 2022 than we did in 2021, indicating that attacks are becoming
both more common and costlier.
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3.3 Attack Data by Chain
The final aspect of the data I will analyze is the attack data for individual chains. Of the chains in our
data set, only Ethereum, BSC and Polygon have witnessed enough attacks for the data to be statistically
significant and interesting. Figure 7 shows the number of attacks on these chains, broken down by type of
attack, so that we may see if certain chains are particularly vulnerable to certain types of attacks. Here we see
that exit scams account for a noticeably smaller proportion of attacks on Ethereum compared to other chains,
with BSC experiencing 38% more exit scam attacks in total than Ethereum, despite experiencing 39.6% less
attacks in total. Exit scams accounted for 50%, 42.9% and 29.5% of the attacks on Solana, Polygon and BSC
respectively, compared to only 13% of attacks on Ethereum, indicating that Ethereum is particularly secure
against exit scams. On the other hand, we see that Ethereum is disproportionately affected by access control
attacks, which account for 16.2% of attacks on ETH, compared to only 6.9% of attacks on BSC, and 0% of the
attacks on Solana or Polygon. As well, ETH is the only chain to have experienced a honeypot exploit, which
account for 5.1% of ETH attacks. Interestingly, flash loans account for a very similar proportion of attacks
on ETH, BSC and Polygon, at 19.2%, 21.3% and 28.6% respectively, while not Solana did not experience any
such attacks.

ETH BSC Polygon Solana

Honeypot
Flash loan
Exploit
Exit Scam
Access control
Abandoned

Proportion of Attacks Across Chains

Chain

Ty
pe

 o
f A

tta
ck

0
20

40
60

80
10

0

Figure 7: Number of Attacks per Chain by Attack Type

4 Discussion
4.1 Attack Prevalence and the Danger of Exploits
By far the most prominent type of attacks in our data are exploits, which showed to be the most frequent,
cause the most damage in total, and cause the most damage on average. Of the 10 costliest attacks, exploits
accounted for 5, including each of the 3 costliest attacks. There are multiple reasons why this is the case.
First, exploit is a very broad term that encompasses any attack resulting from a software vulnerability or
security flaw. This means that specific exploits such as Sybil attacks and 51% attacks are both categorized as
exploits in this data set. As well, there are a multiplicity of avenues that one could use to exploit a protocol,
such as the exchange a token is traded on, the smart contracts dictating trades, exploiting an oversight in
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the chain that the protocol runs in, or an oversight in the protocol code itself. As such, it is expected that
exploits would be the most common types of attack, as it is an umbrella term. This does not, however,
explain why exploits result in substantially more funds being lost on average than any other attack. An
exploit will on average result in more than twice as many lost funds as the second costliest type of attack,
access control. In fact, if we sum the average cost of every other type of attack, the resulting sum is still
only 7.7% more costly than the average exploit. These results changed when looking at the total number of
attacks as opposed to just the top 200 costliest, where we saw exploits fall from by far the most frequent
attack (45.5%) to the 3rd most frequent attack (6.3%). This supports the earlier finding that exploits are
by far the costliest attack on average, and indicates that while exploits are harder to find than originally
thought, the reward for finding them (or cost for having them) is huge.

4.2 Flash Loans
Of the analyzed attack data, one of the most notable results was the rate at which flash loan attacks end up
among the 200 costliest attacks; despite accounting for only 1.5% of all recorded attacks, 85.7% of all flash
loan attacks were among the 200 costliest attacks, by far the greatest likelihood of any attack. Flash loan
attacks occur involve taking out a flash loan from a lending protocol, arbitraging the borrowed money, and
then manipulating the price of the one or multiple tokens in order to turn a profit, before returning repaying
the loan. Flash loan attacks are particularly costly for a number of reasons. All flash loans are executed via
smart contract, meaning that flash loans are entirely automated. By nature of the instantaneous execution of
flash loans, attackers are able to both repeat the process multiple times, as well as execute it across multiple
markets. Not only this, but because the market manipulation is performed with loaned assets drawn from a
general lending pool, returning these assets to the pool effectively washes the attacker’s hands of the attack
and eliminates much of the trace, making flash loan attacks especially low risk for attackers. Somewhat
ironically, the key factors that make flash loans so innovative–anonymity, no collateral and instantaneous
execution–are the same things that make them so costly when exploited.

4.3 Overall Chain Security
In our initial graph of the distribution of attacks across chains, we saw that the vast majority of attacks
occured on BSC or ETH. However, this graph is misleading with regards to its implications for chain security;
because we are looking at the distribution of the 200 costliest attacks, chains with a larger userbase such as
ETH and BSC are naturally more likely to record more such attacks. Thus, we also graph the distribution of
all attacks in Figure 2, with each attack being categorized as either in the top 200 or not. Here we see that
BSC has experienced by far the most successful attacks, followed by Ethereum, with a substantial drop off
between Ethereum and the next most attacked chain, Polygon. When we adjust for the size of the chain by
taking the ratio of attacks to total value locked in Figure 3, we see that EOS is now the most exploited chain,
with a Attack to TVL ratio of 7.83, compared to 0.874 for ETH and 4.54 for BSC. Notably, ETH saw the
sharpest drop relative to the other chains when accounting for TVL, dropping from by far the most attacked
chain to the 11th most. This indicates that relative to its size, Ethereum is actually one of the most secure
chains that we analyzed. Furthermore, in reality Ethereum is even more secure than this metric indicates. If,
for example, instead of considering total value locked in a chain in terms of dollars we consider the total
value locked in a chain as a percentage of the total value locked across all chains, then we would see that
while TVL in Ethereum currently accounts for 54.81% of TVL across all chains, it accounted for 72.95% as
recently as last year (DefiLlama (2022)). If we go back a couple months further to January 2021, Ethereum
accounted for a whopping 97.18% of all the value on chains, completely dominating the space. In Figure 6,
we see that a significant portion of the 200 costliest attacks occurred in and before 2021. This means that
while Ethereum has experienced the most costly attacks and the second most attacks overall, it has been by
far the biggest target of any chain since our earliest data points, and while relative to its current TVL it
appears to be the 4th most secure chain, in reality it is likely far more secure than this metric indicates.
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4.4 Chain Security to Specific Attacks
In Figure 7 we see the distribution of attacks on Ethereum, BSC, Polygon and Solana, categorized by type of
attack. Here we note that Ethereum appears particularly secure against exit scams, which account for only
12.87% of attacks on Ethereum, compared to 29.51% of attacks on BSC, 42.8% of the attacks on Polygon
and 50% of the attacks on Solana, however the latter 2 statistics are less meaningful due to the far smaller
sample size. An exit scam involves heavily promoting a project in order to drive investment from individuals
or companies, before running away with investor’s money. By their nature, exit scams are more about
manipulating individuals than they are exploiting loopholes or technical oversights. As such, the best defense
against exit scams doesn’t involve cybersecurity so much as it does educating your userbase about exit scams
and how to spot them. A brief scroll through Ethereum’s website reveals the strides that Ethereum has
made in the realm of user education, with a dedicated “Learn” section containing guides on everything to
do with Ethereum, from smart contracts to consensus mechanisms, including a section titled “Ethereum
security and scam prevention” which outlines basic safety practices as well as common scams and how to
spot them. At the bottom this section is a list of links for further reading, including multiple links on web
security, crypto security and indeed scam education. Of all the chains, Ethereum has by far the greatest
wealth of information resources on everything to do with crypto, as well as specific sections dedicated to
scam detection and prevention. Needless to say, this would almost invariably play a factor in the distinctly
low rate of exit scams on Ethereum.

Another notable result is the disproportionate rate at which Ethereum appears affected by access control
scams, which involve a hacker gaining access to one or multiple user’s wallets and siphoning user funds to
their own account. At first glance this seems to contradict the previous result about Ethereum’s successful
efforts in educating its users; after all, gaining access to a users wallet involves getting the users key, which
usually occurs as a result of the user inadvertently exposing his own key. Thus, access control scams would
appear to be another type of scam wherein the individual user is most often at fault, rather than a coding
oversight. However, reading through the technical breakdown of some of the costliest access control scams
on the REKT database shows that this is not always the case. For example, the costliest recorded access
control scam occurred back in December 2021, when gaming and NFT platform Vulcan Forged was hacked,
exposing 96 high value wallets. Vulcan Forged offers users a wallet service known as MyForge, which allows
users to manage their wallets through Vulcan’s platform. The passwords to users wallets were co-managed by
both the user and Vulcan, with Vulcan storing user’s private keys on their own side. Thus, when Vulcan
was hacked, hackers gained access to 96 user’s wallets, stealing 4.5 million PYR tokens (Vulcan’s native
token), or about 23% of the circulating supply (Chawla (2021)), roughly equivalent to $140 million. Because
Vulcan Forged is built on Ethereum, and the lost of funds occurred due to hackers gaining access to user’s
private keys, this attack is classified as an access control attack on Ethereum, despite no wrongdoing or bad
security practices on behalf of the users. Many of the other Ethereum access control hacks also occur in a
similar method, where a protocol built on Ethereum is hacked and user’s private keys are exposed. This
is indicative of one possible reason for the prevalence of access control hacks on Ethereum; there are far
more projects built on Ethereum than on any other chain, and of the projects built on other chains, many of
them are also launched on Ethereum as well. DeFi Prime, a digital media and analytics service build for the
DeFi community, has a total of 225 DeFi projects listed in their DeFi ecosystem, of which 203 are built on
Ethereum, compared to 43 built on BSC (Sawinyh (2022)). Simply put, this means that there are there more
avenues for hackers to gain access to user passwords on Ethereum than on other chains.

4.5 Weaknesses
There were a number of difficulties encountered while writing this report, specifically relating to data
collection and formatting. In particular, the inability to download the REKT database made acquiring the
data particularly tedious, and required the use of an external web data extraction software in Octoparse.
While I successfully downloaded data from the database, due to limitations with the extraction software, I
could only download as many data entries as could be displayed on a single page, 200 in this case. While
this was enough data for a statistically meaningful analysis, it would have been incredibly insightful to have
the roughly 2500 excluded data points. Despite this limitation, I was able to manually input a fair amount
of data which was useful in providing additional context to the original data set. However, this in and of
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itself could be seen as a weakness, as this additional data is then subject to human error. As well, the format
in which the data was downloaded made data visualization particularly cumbersome, with me often having
to create entirely new data frames for each graph or set of graphs, making the data exploration especially
complicated.

Another weakness of my analysis pertains to the data itself, and the lack of specificity seen in some of the
variables, specifically when talking about the types of attacks seen. While there is a solid breakdown of
the various types of attacks, it would have been insightful if some of the values–specifically exploit–were
further broken down based on what aspect of the chain or project was exploited. As it stands, exploit acted
as sort of an umbrella term for a number of possible issues, which made it harder to perform a more technical
analysis of the attacks and led to some overcentralization in the attack data of our initial data set. The
manual addition of data on all recorded attacks helped mitigate some of this overcentralization by providing
further context to the data.

The final weakness of this paper is that it remains unclear what may precipitate an attack. Due to the
lack of detailed technical data on each attack, there was simply not enough information for me to properly
investigate this question. Still, the majority of my research questions were answered.

5 Conclusions and Going Forward
There are a number of conclusions that can be drawn from this data. In particular, we see that honeypots
are by far the most frequent type of attack across all analyzed chains, but comparatively result in far less
damages than all other attacks, besides abandoned projects. The prevalence of honeypots indicates that
more effort should be put into mitigating them. However, honeypots also present a unique opportunity, with
the ability to research and analyze the behaviour of would-be attackers. Honeypots deployed for this reason
are referred to as ‘research honeypots’, and can be used to proactively develop preventative defenses against
hostile attacks. For this reason, as well as the low average cost of a honeypot attack, they are not a top
priority in terms of attacks to defend against. Rather, that honor goes to exploits, which account for the vast
majority of the top 200 costliest attacks, and are by far the most damaging attacks on average. However,
because exploits can occur as a result of an oversight in the code associated with a project, chain or smart
contract, they are also the hardest type of attack to combat. As well, because exploits are essentially the
result of a coding error, the main defense against them would simply be to invest more money into software
engineers and computer scientists to audit and inspect a projects code in order to proactively find errors
before attackers do. For a given project, this could take the form of a designated team whos sole objective is
to try and find exploits in the projects associated code. With regards to specific chains, we conclude that of
chains with a meaningful amount of data, Ethereum reigns supreme in terms of security, while BSC appears
to be less secure compared to other chains. In particular, Ethereum is especially secure against exit scams,
and this is likely due in part to their extensive efforts in educating their userbase, which has invariably helped
prevent other types of attacks as well. In this regard, BSC, Polygon and Solana all should invest further in
user education. As the decentralized finance ecosystem continues to rapidly evolve and grow, so too will the
attempts to exploit this sector for personal gain, and it is through consistent and concerted investment into
cybersecurity and user education that we can work towards bulletproofing this blossoming technology so that
it may reach its full potential.
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A Appendix
A.1 Key Terms
Below is a alphabetized list containing key terms used throughout this paper and their definitions.

• Abandoned: When a project is abandoned by its developers. Abandoned coins are referred to as ‘dead
coins’.

• Access Control: A scam in which the attacker obtains access to a targets digital wallet or authentication
keys.

• Bad Actor: An entity that aims to circumvent security protocols and exploit projects and/or individuals
for personal gain.

• Bank Run: Similar to with traditional banks, a bank run in DeFi refers to when holders of a token
rapidly withdraw their assets, causing the token price to drop and leading to a negative feedback
loop wherein other holders panic-sell their tokens, further lowering the price, causing even more users
to sell their tokens, and so forth. The most recent example of a DeFi bank run occurred with Iron
Finance’s TITAN token, which dropped from US$65 to US$0.000000035 over the course of a single day.
Stablecoins, particularly algorithmically backed stablecoins, are especially vulnerable to bank runs.

• DeFi: Refers to decentralized finance, an ecosystem of financial services, products and applications that
can be accessed anonymously, are decentralized and are built on and for public blockchains, such as
Ethereum.

• Blockchain / Chain: A decentralized database that stores encrypted blocks of data and chains them
together to form a chronological ledger for the data. Blockchains are the fundamental innovation upon
which the decentralized finance industry is built.

• Exit Scam: When promoters of a cryptocurrency or DeFi protocol vanish during or soon after the initial
coin offering (ICO) for their product. Promoters will market and promote the currency or concept in
order to raise money from investors, before abandoning the project and disappearing with said money.

• Exploit: Any sort of hostile attack on a DeFi service that exploits a vulnerability or oversight in the
protocol code. Exploits can take many forms.

• Flash Loan: A form of uncollateralized lending executed via smart contract that allows users to borrow
any available amount of assets without posting any collateral. Instead, the liquidity from a flash loan
must be instantly repaid to the lender within a single block transaction. If the borrower doesn’t repay
the capital, the transaction is instantly reversed.

• Honeypot: An attack in which attackers create and send out smart contracts that have an apparent
vulnerability, but contain a hidden trap, such that when an unsuspecting user goes to exploit the
apparent vulnerability in the contract, the trap activates and allows the attacker to siphon the victims
funds to themselves.

• Smart Contract: A self-executing agreement, written in lines of code, that automatically executes when
predetermined conditions are met. Smart contracts allow for agreements to execute instantaneously,
without the involvement of intermediaries, and such that all participants can be certain of the outcome.
Smart contracts are one of the fundamental building blocks of decentralized finance.

• Stablecoin: A digit asset engineered to maintain a stable value relative to some national currency
or other value-based asset. A stablecoin that is designed to replicate the value of another asset is
considered “pegged” to that asset. Maintaining its peg to its associated asset is one of the primary
focuses of stablecoins, which can be further classified based on the method used to maintain their peg:

– Collateralized Stablecoins: Achieve price stability through holding reserves of fiat currencies equal
to or greater than the market cap of the coin. Currently the most popular type of stablecoin, with
examples including Tether (USDT) and USD Coin
(USDC).
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– Algorithmic Stablecoins: A stablecoin model involving 2 tokens: a stablecoin and a token that
shares in the system’s profits from new issuance of stablecoins. Shares in the latter token are
issued to holders of the former, and allow for developers to maintain the stablecoin’s price by
controlling the supply, without harming holders.
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